Balanced Suffix CodeChef Solution

We Are Discuss About CODECHEF SOLUTION

Balanced Suffix CodeChef Solution

Balanced Suffix CodeChef Solution

Answers will be Uploaded Shortly and it will be Notified on Telegram, So JOIN NOW
JoinScishowEngineerTelegram

Problem

You’re given a string  of length  and an integer .

Let  denote the set of all characters in . The string  is called good if, for every suffix of S:

  • The difference between the frequencies of any two characters in  does not exceed .
    In particular, if the set  has a single element, the string  is good.

Find whether there exists a rearrangement of  which is good.
If multiple such rearrangements exist, print the lexicographically smallest rearrangement.
If no such rearrangement exists, print −1 instead.

Note that a suffix of a string is obtained by deleting some (possibly zero) characters from the beginning of the string. For example, the suffixes of �=���� are {�,��,���,����}.

Input Format

  • The first line of input will contain a single integer , denoting the number of test cases.
  • Each test case consists of two lines of input.
    • The first line of each test case contains two space-separated integers  and  — the length of the string and the positive integer as mentioned in the statement, respectively.
    • The next line consists of a string  of length  containing lowercase English alphabets only.

Output Format

For each test case, output on a new line the lexicographically smallest good rearrangement of .

If no such rearrangement exists, print −1 instead.

Constraints

  • 1≤�≤2000
  • 1≤�≤105
  • 1≤�≤�
  •  consists of lowercase english alphabets only.
  • The sum of  over all test cases won’t exceed 2⋅105.

Sample 1:

Input

Output

4
3 1
aaa
4 2
baba
4 1
babb
7 2
abcbcac
aaa
aabb
-1
abcabcc

Explanation:

Test case 1: Since �={�}, the string  is good.

Test case 2: The set �={�,�}. Consider the rearrangement ����. Let �� and �� denote the frequencies of  and  respectively:

  • In suffix ��=1 and ��=0. Thus, ∣��−��∣=1≤�.
  • In suffix ����=2 and ��=0. Thus, ∣��−��∣=2≤�.
  • In suffix �����=2 and ��=1. Thus, ∣��−��∣=1≤�.
  • In suffix ������=2 and ��=2. Thus, ∣��−��∣=0≤�.

Thus, the rearrangement ���� is good. It is also the lexicographically smallest rearrangement possible of string .

Test case 3: It can be proven that there exists no rearrangement of  which is good.

Test case 4: The set �={�,�,�}. Consider the rearrangement �������. Let ��,��, and �� denote the frequencies of �,�, and  respectively:

  • In suffix ��=0,��=0, and ��=1. Thus, ∣��−��∣,∣��−��∣, and ∣��−��∣ are all less than or equal to �=2.
  • In suffix ����=0,��=0, and ��=2. Thus, ∣��−��∣,∣��−��∣, and ∣��−��∣ are all less than or equal to �=2.
  • In suffix �����=0,��=1, and ��=2. Thus, ∣��−��∣,∣��−��∣, and ∣��−��∣ are all less than or equal to �=2.
  • In suffix ������=1,��=1, and ��=2. Thus, ∣��−��∣,∣��−��∣, and ∣��−��∣ are all less than or equal to �=2.
  • In suffix �������=1,��=1, and ��=3. Thus, ∣��−��∣,∣��−��∣, and ∣��−��∣ are all less than or equal to �=2.
  • In suffix ��������=1,��=2, and ��=3. Thus, ∣��−��∣,∣��−��∣, and ∣��−��∣ are all less than or equal to �=2.
  • In suffix ���������=2,��=2, and ��=3. Thus, ∣��−��∣,∣��−��∣, and ∣��−��∣ are all less than or equal to �=2.

Thus, the rearrangement ������� is good. It is also the lexicographically smallest good rearrangement of string .

Answers will be Uploaded Shortly and it will be Notified on Telegram, So JOIN NOW
JoinScishowEngineerTelegram

 

SOLUTION

Here Discuss About Balanced Suffix CodeChef Solution

SOLUTION

Balanced Suffix CodeChef Solution

SOLUTION

Yhaa You have done it but next? if YOU Want to Get Others Please Visit Here ScishowEngineer   Then Follow US HERE and Join Telegram.

If You Want To Learn Something New Then Visit Our Official Channel YOUTUBE

Related Posts

Leave a Reply

Your email address will not be published. Required fields are marked *