# K-Subarrays Codechef Solution

### We Are Discuss About CODECHEF SOLUTION

K-Subarrays Codechef Solution

## K-Subarrays Codechef Solution

Answers will be Uploaded Shortly and it will be Notified on Telegram, So JOIN NOW ## Problem

You are given an array A of N positive integers. Let G be the gcd of all the numbers in the array A.

You have to find if there exist K non-emptynon-intersecting subarrays of A for which the arithmetic mean of the gcd of those K subarrays equals G.

Formally, let g_1, g_2, \ldots, g_K be the gcd of those K chosen subarrays, then, \frac{(g_1 + g_2 + …. + g_K)}{K} = G should follow.

If there exist K such subarrays, output YES, otherwise output NO.

Note: Two subarrays are non-intersecting if there exists no index i, such that, A_i is present in both the subarrays.

### Input Format

• The first line of input will contain a single integer T, denoting the number of test cases.
• Each test case consists of multiple lines of input.
• The first line of each test case contains two space-separated integers — the number of integers in the array A and the integer K, respectively.
• The next line contains N space-separated positive integers A_1, A_2, \ldots, A_N, the elements of the array A.

### Output Format

For each test case, if there exist K such subarrays, output YES, otherwise output NO.

You may print each character of the string in uppercase or lowercase (for example, the strings YESyEsyes, and yeS will all be treated as identical).

### Constraints

• 1 \leq T \leq 1000
• 1 \leq N \leq 2 \cdot {10}^5
• 1 \leq K \leq N
• 1 \leq A_i \leq 2 \cdot {10}^5
• The sum of N over all test cases won’t exceed 4 \cdot {10}^5.

### Sample 1:

Input

Output

4
6 4
2 2 3 3 2 2
1 1
1
5 3
1 2 3 4 5
4 3
6 12 18 24
NO
YES
YES
NO


### Explanation:

Test case 1: It is impossible to find 4 non-empty, non-intersecting subarrays which satisfy the given condition.

Test case 2: There is only one element in the array. Here, G = 1 and, for the subarray g = 1. Thus, it is possible to satisfy the conditions.

Test case 3: Here, G = gcd(1,2,3,4,5) = 1. We can choose 3 non-empty, non-intersecting subarrays \{, [2,3], [4,5]\} where gcd(1) = 1gcd(2,3) = 1, and gcd(4,5) = 1. Thus, the arithmetic mean = \frac{(1 + 1 + 1)}{3} = 1. Hence, we can have 3 such subarrays.

Test case 4: It is impossible to find 3 non-empty, non-intersecting subarrays which satisfy the given condition.

Answers will be Uploaded Shortly and it will be Notified on Telegram, So JOIN NOW ## SOLUTION

Yhaa You have done it but next? if YOU Want to Get Others Please Visit Here ScishowEngineer   Then Follow US HERE and Join Telegram.

If You Want To Learn Something New Then Visit Our Official Channel YOUTUBE