NPTEL IITKGP Introduction to Machine Learning Assignment 1 Answers

We Discuss About That NPTEL IITKGP Introduction to Machine Learning Assignment 1 Answers

NPTEL IITKGP Introduction to Machine Learning Assignment 1 Answers – Here All The Questions and Answers Provided to Help All The Students and NPTEL Candidate as a Reference Purpose, It is Mandetory to Submit Your Weekly Assignment By Your Own Understand Level.

Are you looking for the Assignment Answers to NPTEL IITKGP Introduction to Machine Learning Assignment 1 Answers? If Yes You are in Our Great Place to Getting Your Solution, This Post Should be help you with the Assignment answer to the National Programme on Technology Enhanced Learning (NPTEL) Course “NPTEL IITKGP Introduction to Machine Learning Assignment 1 Answers”

NPTEL IITKGP Introduction to Machine Learning

ABOUT THE COURSE :

This course provides a concise introduction to the fundamental concepts in machine learning and popular machine learning algorithms. We will cover the standard and most popular supervised learning algorithms including linear regression, logistic regression, decision trees, k-nearest neighbour, an introduction to Bayesian learning and the naĂŻve Bayes algorithm, support vector machines and kernels and neural networks with an introduction to Deep Learning. We will also cover the basic clustering algorithms. Feature reduction methods will also be discussed. We will introduce the basics of computational learning theory. In the course we will discuss various issues related to the application of machine learning algorithms. We will discuss hypothesis space, overfitting, bias and variance, tradeoffs between representational power and learnability, evaluation strategies and cross-validation. The course will be accompanied by hands-on problem solving with programming in Python and some tutorial sessions.

Next Week Assignment Answers

SciShowEngineerTelegram

This course can have Associate in Nursing unproctored programming communication conjointly excluding the Proctored communication, please check announcement section for date and time. The programming communication can have a weightage of twenty fifth towards the ultimate score.

Final score = Assignment score + Unproctored programming exam score + Proctored Exam score
  • Assignment score = 25% of average of best 8 assignments out of the total 12 assignments given in the course.
  • ( All assignments in a particular week will be counted towards final scoring – quizzes and programming assignments). 
  • Unproctored programming exam score = 25% of the average scores obtained as part of Unproctored programming exam – out of 100
  • Proctored Exam score =50% of the proctored certification exam score out of 100
YOU WILL BE ELIGIBLE FOR A CERTIFICATE ONLY IF ASSIGNMENT SCORE >=10/25 AND
UNPROCTORED PROGRAMMING EXAM SCORE >=10/25 AND PROCTORED EXAM SCORE >= 20/50. 
If any one of the 3 criteria is not met, you will not be eligible for the certificate even if the Final score >= 40/100. 

CHECK HERE OTHERS NPTEL ASSIGNMENTS ANSWERS 

BELOW YOU CAN GET YOUR NPTEL IITKGP Introduction to Machine Learning Assignment 1 Answers 2022? :

 

Answers will be Uploaded Shortly and it will be Notified on Telegram, So JOIN NOW
JoinScishowEngineerTelegram

Q1. Which of the following are classification tasks?

A. Find the gender of a person by analyzing his writing style
B. Predict the price of a house based on floor area, number of rooms etc.
C. Predict the temperature for the next day
D. Predict the number of copies of a book that will be sold this

Answer:- a

2. Which of the following is a not categorical feature?

A. Gender of a person
B. Height of a person
c. Types of Mountains
D. Nationality of a person

Answer:- b
Answers will be Uploaded Shortly and it will be Notified on Telegram, So JOIN NOW
JoinScishowEngineerTelegram

3. Which of the following tasks is NOT a suitable machine leaming task?

A. Finding the shortest path between a pair of nodes in a graph
B. Predicting if a stock price will ise or fall
C. Predicting the price of petroleum
D. Grouping mails as spams or non-spams

Answer:- a

4. Suppose I have 10,000 emails in my mailbox out of which 200 are spams. The spam detection system detects 150 mails as spams, out of which 50 are actually spams. What is the precision and recall of my spam detection system?

A. Precision = 33.333%, Recall =25%
B. Precision = 25%, Recall = 33.33%
C. Precision = 33.33%, Recall = 75%
D. Precision = 75%. Recall = 33.33%

Answer:- b

5. A feature F1 can take certain values: A, B, C. D, E, F and represents the grade of students from a college. Which of the following statements is true in the following case?

A. Feature F1 is an example of a nominal variable.
B. Feature F1 is an example of ordinal variables.
C. It doesn’t belong to any of the above categories.
D. Both of these

Answer:- b

6. One of the most common uses of Machine Learning today is in the domain of Robotics. Robotic tasks include a multitude of ML methods tailored towards navigation, robotic control and a number of other tasks. Robotic control includes controlling the actuators available to the robotic system. An example of this is control of a painting arm in automotive industries. The robotic arm must be able to paint every corner in the automotive parts while minimizing the quantity of paint wasted in the process. Which of the following learning paradigms would you select for training such a robotic arm?

A. Supervised learning
B. Unsupervised learning
C. Combination of supervised and unsupervised learning
D. Reinforcement learning

Answer:- d
Answers will be Uploaded Shortly and it will be Notified on Telegram, So JOIN NOW
JoinScishowEngineerTelegram

7. How many Boolean functions are possible with n features?

A. (22)n
B.(2n)
c (N2)
D (4N)

Answer:- a

8. What is the use of Validation dataset in Machine Leaming?

A. To train the machine learning model.
B. To evaluate the peformance of the machine learning model
C. To tune the hyperparameters of the machine learning model
D. None of the above

Answer:- c

9. Regarding bias and variance, which of the following statements are true? (Here ‘high’ and low’ are relative to the ideal model.)

A. Models which overfit have a high bias.
B. Models which overfit have a low bias.
C. Models which underfit have a high variance.
D. Models which underfit have a low variance

Answer:- b, d

10. Identify whether the following statement is true or false? Occam’s Razor is an example of Inductive Bias”

A. True
B. False

Answer:- a
Answers will be Uploaded Shortly and it will be Notified on Telegram, So JOIN NOW
JoinScishowEngineerTelegram

Yhaa You have done it but next? if YOU Want to your Others NPTEL IITKGP Introduction to Machine Learning Assignment 1 Answers Then Follow US HEREand Join Telegram.

Related Posts

Leave a Reply

Your email address will not be published. Required fields are marked *