Prefix Permutation CodeChef Solution

We Are Discuss About CODECHEF SOLUTION

Prefix Permutation CodeChef Solution

Prefix Permutation CodeChef Solution

Answers will be Uploaded Shortly and it will be Notified on Telegram, So JOIN NOW
JoinScishowEngineerTelegram

Problem

You are given an integer . Your task is to generate a permutation  of size , such that:

  • For all (1<�≤�)∑�=1��� is not divisible by .
    In other words, the sum of prefix of length  (�>1) should not be divisible by .

In case multiple such permutations exist, print any. If no such permutation exists, print −1 instead.

Note that a permutation of size  contains all integers from 1 to  exactly once.

Input Format

  • The first line of input will contain a single integer , denoting the number of test cases.
  • Each test case consists a single integer  — the size of the permutation.

Output Format

For each test case, output on a new line,  space separated integers, denoting the required permutation.

In case multiple such permutations exist, print any. If no such permutation exists, print −1 instead.

Constraints

  • 1≤�≤1000
  • 2≤�≤104
  • The sum of  over all test cases won’t exceed 2⋅105.

Sample 1:

Input

Output

3
4
6
7
3 4 1 2
1 2 4 6 3 5
-1

 

 

Explanation:

Test case 1: A possible permutation satisfying the given conditions is �=[3,4,1,2].

  • For �=2: The prefix sum is 3+4=7, which is not divisible by 2.
  • For �=3: The prefix sum is 3+4+1=8, which is not divisible by 3.
  • For �=4: The prefix sum is 3+4+1+2=10, which is not divisible by 4.

Test case 2: A possible permutation satisfying the given conditions is �=[1,2,4,6,3,5].

  • For �=2: The prefix sum is 1+2=3, which is not divisible by 2.
  • For �=3: The prefix sum is 1+2+4=7, which is not divisible by 3.
  • For �=4: The prefix sum is 1+2+4+6=13, which is not divisible by 4.
  • For �=5: The prefix sum is 1+2+4+6+3=16, which is not divisible by 5.
  • For �=6: The prefix sum is 1+2+4+6+3+5=21, which is not divisible by 6.

Test case 3: It can be proven that no permutation of length 7 satisfies the given conditions.

Answers will be Uploaded Shortly and it will be Notified on Telegram, So JOIN NOW
JoinScishowEngineerTelegram

 

SOLUTION

Here Discuss About Solve Prefix Permutation CodeChef Solution

SOLUTION

Prefix Permutation CodeChef Solution

SOLUTION

Yhaa You have done it but next? if YOU Want to Get Others Please Visit Here ScishowEngineer   Then Follow US HERE and Join Telegram.

If You Want To Learn Something New Then Visit Our Official Channel YOUTUBE

Related Posts

Leave a Reply

Your email address will not be published. Required fields are marked *